Human macrophage ferroportin biology and the basis for the ferroportin disease
نویسندگان
چکیده
Ferroportin (FPN1) is the sole iron exporter in mammals, but its cell-specific function and regulation are still elusive. This study examined FPN1 expression in human macrophages, the cells that are primarily responsible on a daily basis for plasma iron turnover and are central in the pathogenesis of ferroportin disease (FD), the disease attributed to lack-of-function FPN1 mutations. We characterized FPN1 protein expression and traffic by confocal microscopy, western blotting, gel filtration, and immunoprecipitation studies in macrophages from control blood donors (donor) and patients with either FPN1 p.A77D, p.G80S, and p.Val162del lack-of-function or p.A69T gain-of-function mutations. We found that in normal macrophages, FPN1 cycles in the early endocytic compartment does not multimerize and is promptly degraded by hepcidin (Hepc), its physiological inhibitor, within 3-6 hours. In FD macrophages, endogenous FPN1 showed a similar localization, except for greater accumulation in lysosomes. However, in contrast with previous studies using overexpressed mutant protein in cell lines, FPN1 could still reach the cell surface and be normally internalized and degraded upon exposure to Hepc. However, when FD macrophages were exposed to large amounts of heme iron, in contrast to donor and p.A69T macrophages, FPN1 could no longer reach the cell surface, leading to intracellular iron retention. CONCLUSION FPN1 cycles as a monomer within the endocytic/plasma membrane compartment and responds to its physiological inhibitor, Hepc, in both control and FD cells. However, in FD, FPN1 fails to reach the cell surface when cells undergo high iron turnover. Our findings provide a basis for the FD characterized by a preserved iron transfer in the enterocytes (i.e., cells with low iron turnover) and iron retention in cells exposed to high iron flux, such as liver and spleen macrophages. (Hepatology 2017;65:1512-1525).
منابع مشابه
Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter.
Ferroportin is a multipass membrane protein that serves as an iron exporter in many vertebrate cell types. Ferroportin-mediated iron export is controlled by the hormone hepcidin, which binds ferroportin, causing its internalization and degradation. Mutations in ferroportin cause a form of the iron overload hereditary disease hemochromatosis. Relatively little is known about ferroportin's proper...
متن کاملZebrafish as a model for defining the functional impact of mammalian ferroportin mutations.
The term hemochromatosis represents a group of inherited disorders leading to iron overload. Mutations in HFE, HJV, and TfR2 cause autosomal-recessive forms of hemochromatosis. Mutations in ferroportin, however, result in dominantly inherited iron overload. Some mutations (H32R and N174I) in ferroportin lead to macrophage iron loading, while others (NI44H) lead to hepatocyte iron loading. Expre...
متن کاملبررسی فراوانی حضور مارکر ایمونوهیستوشیمی فروپورتین در نمونههای بهدستآمده از بافت سرطانی بیماران مبتلا به سرطان پستان و ارتباط آن با فاکتورهای پروگنوستیک
Background & Aims: Breast cancer is the most prevalent malignancy in women. A few articles describe a marked decrease in the levels of ferroportin in breast cancer cells.The presented results demonstrate convincingly the incredible diagnostic and prognostic value of ferroportin expression in breast cancer and suggest that determination of this molecular marker maybe used as guidance toward ind...
متن کاملIron loading increases ferroportin heterogeneous nuclear RNA and mRNA levels in murine J774 macrophages.
The transmembrane protein ferroportin is highly expressed in tissue macrophages, where it mediates iron export into the bloodstream. Although ferroportin expression can be controlled post-transcriptionally through a 5' iron-responsive element in its mRNA, various studies have documented increased ferroportin mRNA levels in response to iron, suggesting transcriptional regulation. We studied the ...
متن کاملPrimary iron overload with inappropriate hepcidin expression in V162del ferroportin disease.
Ferroportin disease (hemochromatosis type 4) is a recently recognized disorder of human iron metabolism, characterized by iron deposition in macrophages, including Kupffer cells. Mutations in the gene encoding ferroportin 1, a cellular iron exporter, are responsible for this iron storage disease, inherited as an autosomal dominant trait. We present clinical, histopathological, and radiological ...
متن کاملReduced sensitivity of the ferroportin Q248H mutant to physiological concentrations of hepcidin.
Ferroportin Q248H mutation has an allele frequency of 2.2-13.4% in African populations and is associated with a mild tendency to increased serum ferritin in the general population. Some investigators have reported that ferroportin Q248H is degraded after exposure to hepcidin in exactly the same manner as wild-type ferroportin, but supraphysiological concentrations of hepcidin were used. The aim...
متن کامل